Moving contact line of a volatile fluid.
نویسندگان
چکیده
Interfacial flows close to a moving contact line are inherently multiscale. The shape of the interface and the flow at meso- and macroscopic scales inherit an apparent interface slope and a regularization length, both named after Voinov, from the microscopic inner region. Here, we solve the inner problem associated with the contact line motion for a volatile fluid at equilibrium with its vapor. The evaporation or condensation flux is then controlled by the dependence of the saturation temperature on interface curvature-the so-called Kelvin effect. We derive the dependencies of the Voinov angle and of the Voinov length as functions of the parameters of the problem. We then identify the conditions under which the Kelvin effect is indeed the mechanism regularizing the contact line motion.
منابع مشابه
A variational approach to moving contact line hydrodynamics
In immiscible two-phase flows, the contact line denotes the intersection of the fluid– fluid interface with the solid wall. When one fluid displaces the other, the contact line moves along the wall. A classical problem in continuum hydrodynamics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a non-integrable singularity. The rec...
متن کاملMolecular Hydrodynamics of the Moving Contact Line in Two-Phase Immiscible Flows
The no-slip boundary condition, i.e., zero fluid velocity relative to the solid at the fluid-solid interface, has been very successful in describing many macroscopic flows. A problem of principle arises when the no-slip boundary condition is used to model the hydrodynamics of immiscible-fluid displacement in the vicinity of the moving contact line, where the interface separating two immiscible ...
متن کاملCharacteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle
One area of fluid mechanics that has been the subject of a large admixture of analysis, experiment and speculation is the subject of the moving contact line. A typical situation, common in many coating processes, refers to the contact line at the intersection of solid, liquid and gas regions, where the three-phase line moves relative to a solid substrate. A basic question in this subject stems ...
متن کاملModeling of the moving deformed triple contact line: influence of the fluid inertia.
For partial wetting, motion of the triple liquid-gas-solid contact line is influenced by heterogeneities of the solid surface. This influence can be strong in the case of inertial (e.g., oscillation) flows where the line can be pinned or move intermittently. A model that takes into account both surface defects and fluid inertia is proposed. The viscous dissipation in the bulk of the fluid is as...
متن کاملModelling of the moving deformed triple contact line: influence of the fluid inertia
For partial wetting, motion of the triple liquid-gas-solid contact line is influenced by heterogeneities of the solid surface. This influence can be strong in the case of inertial (e.g. oscillation) flows where the line can be pinned or move intermittently. A model that takes into account both surface defects and fluid inertia is proposed. The viscous dissipation in the bulk of the fluid is ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 6 شماره
صفحات -
تاریخ انتشار 2013